Robust Mapping and Localization in Indoor Environments Using Sonar Data
نویسندگان
چکیده
In this paper we describe a new technique for the creation of featurebased stochastic maps using standard Polaroid sonar sensors. The fundamental contributions of our proposal are: (1) a perceptual grouping process that permits the robust identification and localization of environmental features, such as straight segments and corners, from the sparse and noisy sonar data; (2) a map joining technique that allows the system to build a sequence of independent limited-size stochastic maps and join them in a globally consistent way; (3) a robust mechanism to determine which features in a stochastic map correspond to the same environment feature, allowing the system to update the stochastic map accordingly, and perform tasks such as revisiting and loop closing. We demonstrate the practicality of this approach by building a geometric map of a medium size, real indoor environment, with several people moving around the robot. Maps built from laser data for the same experiment are provided for comparison. KEY WORDS—map building, local maps, data association, sonar sensors, Hough transform
منابع مشابه
Robust image fusion using a statistical signal processing approach
Robust Mapping and Localization in Indoor Environments Using Sonar Data all 6 versions » JD Tardos, J Neira, PM Newman, JJ Leonard The International Journal of Robotics Research, 2002 ijr.sagepub.com The International Journal of Robotics Research Juan D Tardos, Jose Neira, Paul M Newman and John J Leonard Robust Mapping and Localization in Indoor Environments Using Sonar Data ... The Internatio...
متن کاملRobust Map Learning with Low-Cost Sensors for an Autonomous Robot
The paper describes several approaches and experimental results for learning a map of an indoor environment, using a combination of odometry, sonar range sensors, and vision. The aim of the presented research work is consistent real-time map-learning in indoor-environments with low-cost sensors and limited computational resources and without installations in the environment itself. Therefore, w...
متن کاملMap-merging in Multi-robot Simultaneous Localization and Mapping Process Using Two Heterogeneous Ground Robots
In this article, a fast and reliable map-merging algorithm is proposed to produce a global two dimensional map of an indoor environment in a multi-robot simultaneous localization and mapping (SLAM) process. In SLAM process, to find its way in this environment, a robot should be able to determine its position relative to a map formed from its observations. To solve this complex problem, simultan...
متن کاملEffects of Moving Landmark’s Speed on Multi-Robot Simultaneous Localization and Mapping in Dynamic Environments
Even when simultaneous localization and mapping (SLAM) solutions have been broadly developed, the vast majority of them relate to a single robot performing measurements in static environments. Researches show that the performance of SLAM algorithms deteriorates under dynamic environments. In this paper, a multi-robot simultaneous localization and mapping (MR-SLAM) system is implemented within a...
متن کاملTowards Robust Data Association and Feature Modeling for Concurrent Mapping and Localization
One of the most challenging aspects of concurrent mapping and localization (CML) is the problem of data association. Because of uncertainty in the origins of sensor measurements, it is difficult to determine the correspondence between measured data and features of the scene or object being observed, while rejecting spurious measurements. However, there are many important applications of mobile ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- I. J. Robotics Res.
دوره 21 شماره
صفحات -
تاریخ انتشار 2002